Lots to read here:
DPL / DCS Information
Notice the following values in my sample screen capture above for DCS132
+132, +605, +634, +714
-317, -546, -614, -751
Rich
"There is nothing in the DCS math that recognizes or knows about signal inversion. More importantly, there is no way for the transmitter to tell the receiver what the correct polarity is to decode its signal. With these assumed "perfect laboratory conditions" where the transmitter and receiver both have the same signal polarity, what we send is what we get. If we Tx a 023 DCS code, we will Rx a 023 DCS code, after the receiver rotates the 23 bits around to find it.
Notice that even though we sent a 023 DCS code, we could also receive it as DCS code 340 or DCS code 766 if we wanted to. This brings up the question, "How do we know which code to use?". The only answer is there seems to be an un-enforced agreement to only use one DCS code when there are multiple possible DCS codes (more on this later). The other matching DCS codes (like 340 or 766) are still there, they are just ignored. This agreement only applies to the so called "standard" set of 83 DCS codes used by the communications industry.
This is all for the "perfect laboratory conditions", now we will dive into the real world. In the real world there is no guarantee that a transmitter and receiver will have the same signal polarity. Unless you are using the exact same manufacturer and model of radios for Tx and Rx, there just might be an unavoidable polarity inversion between them. Let's take a look at what happens when the equipment inverts the DCS 23 bit word polarity:"