ultravista
Member
- Joined
- Sep 19, 2012
- Messages
- 102
As a novice in the world of radio, I want to understand antennas. Can someone explain antenna resonance as it pertains to electrical length? I am having a hard time wrapping my head around the concept.
My concept is that antenna ‘resonance’ is akin to a tuning fork humming – the EMF wave excites and vibrates the element. Picturing a sinusoidal wave, the wave’s length matches the antennas element perfectly and it becomes resonant. As the element becomes shorter or longer, the wavelength doesn’t match the electrical length and resonance moves elsewhere.
Let’s talk small lengths, such as a ½ wave 10 meter (28.3 MHz) dipole @ 16.5 feet. What actually happens when the antenna is a full, 3/4, 1/2, 5/8 or 1/4 wavelength? What is ‘resonating’ and is ‘resonance’ a product of the electrical length? If yes, what specifically about the electrical length makes an antenna resonate?
Does a ‘normal’ resonant 1/2 dipole perform with a greater efficiency than a coil loaded dipole? If they are electrically the same length, but a portion of the element is a coil, how and why does it perform in a different way?
How does a resonant loaded dipole (or other) antenna work when it is considerably shorter than normal? For some designs, the coils are very tight with little or no spacing. Why not make a super coiled physically short 160 dipole? One could easily coil a 250 foot long 160 meter half wave dipole into a compact antenna – right?
All of this is to understand how to make an electrically long MW receiving antenna. Instead of a long wire, why not load it up to make it electrically longer for the purpose of resonating more efficiently?
Antenna resonance for Dummies – that’s what I am looking for …
My concept is that antenna ‘resonance’ is akin to a tuning fork humming – the EMF wave excites and vibrates the element. Picturing a sinusoidal wave, the wave’s length matches the antennas element perfectly and it becomes resonant. As the element becomes shorter or longer, the wavelength doesn’t match the electrical length and resonance moves elsewhere.
Let’s talk small lengths, such as a ½ wave 10 meter (28.3 MHz) dipole @ 16.5 feet. What actually happens when the antenna is a full, 3/4, 1/2, 5/8 or 1/4 wavelength? What is ‘resonating’ and is ‘resonance’ a product of the electrical length? If yes, what specifically about the electrical length makes an antenna resonate?
Does a ‘normal’ resonant 1/2 dipole perform with a greater efficiency than a coil loaded dipole? If they are electrically the same length, but a portion of the element is a coil, how and why does it perform in a different way?
How does a resonant loaded dipole (or other) antenna work when it is considerably shorter than normal? For some designs, the coils are very tight with little or no spacing. Why not make a super coiled physically short 160 dipole? One could easily coil a 250 foot long 160 meter half wave dipole into a compact antenna – right?
All of this is to understand how to make an electrically long MW receiving antenna. Instead of a long wire, why not load it up to make it electrically longer for the purpose of resonating more efficiently?
Antenna resonance for Dummies – that’s what I am looking for …